Роль банков в рыночной экономике
Принцип работы банкоматов
Рассмотрим некоторые методы "мягких" вычислений, не получившие пока широкого распространения в бизнесе. Алгоритмы и параметры этих методов значительно меньше детерминированы по сравнению с традиционными. Появление концепций "мягких" вычислений было вызвано попытками упрощенного моделирования интеллектуальных и природных процессов, которые во многом носят случайный характер.
Нейронные сети используют современное представление о строении и функционировании мозга. Считается, что мозг состоит из простых элементов - нейронов, соединенных между собой синапсами, через которые они обмениваются сигналами.
Основное преимущество нейронных сетей заключается в способности обучаться на примерах. В большинстве случаев обучение представляет собой процесс изменения весовых коэффициентов синапсов по определенному алгоритму. При этом, как правило, требуется много примеров и много циклов обучения. Здесь можно провести аналогию с рефлексами собаки Павлова, у которой слюноотделение по звонку тоже начало появляться не сразу. Отметим лишь, что самые сложные модели нейронных сетей на много порядков проще мозга собаки; и циклов обучения нужно значительно больше.
Применение нейронных сетей оправдано тогда, когда невозможно построить точную математическую модель исследуемого объекта или явления. Например, продажи в декабре, как правило, больше, чем в ноябре, но нет формулы, по которой можно посчитать, насколько они будут больше в этом году; для прогнозирования объема продаж можно обучить нейронную сеть на примерах предыдущих лет.
Среди недостатков нейронных сетей можно назвать: длительное время обучения, склонность к подстройке под обучающие данные и снижение обобщающих способностей с ростом времени обучения. Кроме того, невозможно объяснить, каким образом сеть приходит к тому или иному решению задачи, то есть нейронные сети являются системами категории "черный ящик", потому что функции нейронов и веса синапсов не имеют реальной интерпретации. Тем не менее, существует масса нейросетевых алгоритмов, в которых эти и другие недостатки так или иначе нивелированы.
В прогнозировании нейронные сети используются чаще всего по простейшей схеме: в качестве входных данных в сеть подается предварительно обработанная информация о значениях прогнозируемого параметра за несколько предыдущих периодов, на выходе сеть выдает прогноз на следующие периоды - как в вышеупомянутом примере с продажами. Существуют и менее тривиальные способы получения прогноза; нейронные сети - очень гибкий инструмент, поэтому существует множество конечных моделей самих сетей и вариантов их применения.
Еще один метод - генетические алгоритмы. В их основе лежит направленный случайный поиск, то есть попытка моделирования эволюционных процессов в природе. В базовом варианте генетические алгоритмы работают так:
1. Решение задачи представляется в виде хромосомы.
2. Создается случайный набор хромосом - это изначальное поколение решений.
3. Они обрабатываются специальными операторами репродукции и мутации.
4. Производится оценка решений и их селекция на основе функции пригодности.
5. Выводится новое поколение решений, и цикл повторяется.
В результате с каждой эпохой эволюции находятся более совершенные решения.
При использовании генетических алгоритмов аналитик не нуждается в априорной информации о природе исходных данных, об их структуре и т. д. Аналогия здесь прозрачна - цвет глаз, форма носа и густота волосяного покрова на ногах закодированы в наших генах одними и теми же нуклеотидами.
В прогнозировании генетические алгоритмы редко используются напрямую, так как сложно придумать критерий оценки прогноза, то есть критерий отбора решений, - при рождении невозможно определить, кем станет человек - космонавтом или алконавтом. Поэтому обычно генетические алгоритмы служат вспомогательным методом - например, при обучении нейронной сети с нестандартными активационными функциями, при которых невозможно применение градиентных алгоритмов. Здесь в качестве примера можно назвать MIP-сети, успешно прогнозирующие, казалось бы, случайные явления - число пятен на солнце и интенсивность лазера.
Рекомендуемая информация:
Проблемные стороны дистанционного банка и Интернет-банкинга
В последнее время наблюдается отток клиентов из данных банков. Оказалось, что главное их преимущество - виртуальность - является одновременно и главным недостатком.
Основной причиной, заставляющей их расставаться с таким банком, клиенты ...
Исследование рефинансирования ОАО "Дальневосточный
банк"
Коммерческие банки для ведения коммерческой и хозяйственной деятельности располагают денежными средствами, т.е. ресурсами. По способу образования ресурсы банка подразделяются на собственные и привлеченные (обязательства перед клиентами и ...
Денежно-кредитная политика Центрального банка РФ
Основополагающей целью денежно-кредитной политики является помощь экономике в достижении общего уровня производства, характеризующегося полной занятостью и стабильностью цен. Денежно-кредитная политика состоит в изменении денежного предло ...